MICHAEL KLARE: Lithium, Cobalt, and Rare Earths

According to the IEA, just one country, the Democratic Republic of the Congo (DRC), currently supplies more than 80% of the world’s cobalt, and another — China — 70% of its rare-earth elements. Similarly, lithium production is largely in two countries, Argentina and Chile, which jointly account for nearly 80% of world supply, while four countries — Argentina, Chile, the DRC, and Peru — provide most of our copper. In other words, such future supplies are far more concentrated in far fewer lands than petroleum and natural gas, leading IEA analysts to worry about future struggles over the world’s access to them... 

Thanks to its very name — renewable energy — we can picture a time in the not-too-distant future when our need for non-renewable fuels like oil, natural gas, and coal will vanish. Indeed, the Biden administration has announced a breakthrough target of 2035 for fully eliminating U.S. reliance on those non-renewable fuels for the generation of electricity. That would be accomplished by “deploying carbon-pollution-free electricity-generating resources,” primarily the everlasting power of the wind and sun.

With other nations moving in a similar direction, it’s tempting to conclude that the days when competition over finite supplies of energy was a recurring source of conflict will soon draw to a close. Unfortunately, think again: while the sun and wind are indeed infinitely renewable, the materials needed to convert those resources into electricity — minerals like cobalt, copper, lithium, nickel, and the rare-earth elements, or REEs — are anything but. Some of them, in fact, are far scarcer than petroleum, suggesting that global strife over vital resources may not, in fact, disappear in the Age of Renewables.

To appreciate this unexpected paradox, it’s necessary to explore how wind and solar power are converted into usable forms of electricity and propulsion. Solar power is largely collected by photovoltaic cells, often deployed in vast arrays, while the wind is harvested by giant turbines, typically deployed in extensive wind farms. To use electricity in transportation, cars and trucks must be equipped with advanced batteries capable of holding a charge over long distances. Each one of these devices uses substantial amounts of copper for electrical transmission, as well as a variety of other non-renewable minerals. Those wind turbines, for instance, require manganese, molybdenum, nickel, zinc, and rare-earth elements for their electrical generators, while electric vehicles (EVs) need cobalt, graphite, lithium, manganese, and rare earths for their engines and batteries…

https://tomdispatch.com/lithium-cobalt-and-rare-earths/

TOM ENGELHARDT: A World at the Edge


Popular posts from this blog

Third degree torture used on Maruti workers: Rights body

Haruki Murakami: On seeing the 100% perfect girl one beautiful April morning

The Almond Trees by Albert Camus (1940)

Albert Camus's lecture 'The Human Crisis', New York, March 1946. 'No cause justifies the murder of innocents'

Etel Adnan - To Be In A Time Of War

After the Truth Shower

Rudyard Kipling: critical essay by George Orwell (1942)