Friday, August 12, 2016

Kate Brown - Dear Comrades! Chernobyl's mark on the Anthropocene

Authors writing about the Anthropocene and the Chernobyl disaster alike tend to slip into millennial scales and metaphysics. Historian Kate Brown suggests getting down to the particulars: the dates, facts and fate of people most directly confronted with the new radioactive reality.
One thousand years from now geologists will find substances in the sedimentary layer, among them radioactive isotopes, which they will date starting about 1945. The scientists of the future will be able to track the remnants of plutonium, uranium and other isotopes as they multiplied on the earth's surface in the decades of nuclear weapons testing followed by decades of furious reactor construction. They will locate hot spots of concentrated activity, but generally the isotopes will embrace the planet like the sweet icing glaze encircling a donut: existing everywhere, holding fast, spiking the flavour of life.

At the dawn of the nuclear era in the 1940s, American scientists realized.. that a hundred per cent of radioactive cesium collects in the digestive tract. Strontium and plutonium, they found, mimic the behaviour of calcium in human bodies and settles in bones and marrow. Human thyroids readily drink up radioactive iodine. Collecting children's baby teeth from around the world, they realized that by the end of the first decade of nuclear testing, every person on earth had incorporated radioactive fallout. KGB doctors in Kyiv in the late 1980s came to similar insights. They recorded ten to twelve different radioactive isotopes in the bodies of their patients who had been exposed to Chernobyl radiation. Some of the isotopes drain from the body over time. Plutonium never leaves the body.

Just before the thirtieth anniversary of the Chernobyl disaster in April 2016, journalists from the Associated Press tested milk from a Belarusian dairy farm located near the 30 kilometer Zone of Alienation, which was created in the weeks following the explosion of reactor no. 4 at the Chernobyl Nuclear Power Plant in April 1986. Lab results showed the milk had ten times more radioactive strontium than permitted by Belarusian law. Farm director Nikolai Chubenok was flabbergasted. "That is impossible," he said and described how the farm had a lab that tested every sample for traces of the radioactive isotopes known to be in soils of zones contaminated by the accident.

Global reporting on radioactive milk was bad news for regional business and political leaders. In the past few years, Belarus, Ukraine and Russia have been working, yet again, to close the last chapter on the Chernobyl disaster. Russian officials announced in December 2014 that they reduced in half the number of communities in Russia considered contaminated that qualify for subsidies. Belarusian officials have been cooperating with international agencies for a decade to return contaminated land to farm production, and a state run company is constructing Belarus' first nuclear power plant on its northern border with Lithuania. Ukrainian leaders, meanwhile, are dreaming up plans to transform their section of the Zone into a nuclear industrial park. Officials assert their plans for resuming economic activity on Chernobyl contaminated ground can go forward because the level of radiation has decreased to safe levels. Life, they say, can return to normal. Well, almost normal, until a reporter discovers strontium 90 in milk.

The race to relegate the Chernobyl disaster to history books shows that humans don't have the patience for the time scale that nuclear accidents require. The period for half of the cesium and strontium fallout to decay elapsed at thirty years. It will take another thirty years to extinguish the remaining half. Americium as it decays over several hundred years issues radioactive iodine, a powerful and harmful, short-lived isotope. Plutonium will continue to pulse with destructive energy for thousands of years.

In the dawning age of the Anthropocene, humans are grappling with new temporal orders presented by a mounting, steadily accruing layer of toxins and carbons produced and released by human activity. One thousand years from now geologists will find substances in the sedimentary layer, among them radioactive isotopes, which they will date starting about 1945. The scientists of the future will be able to track the remnants of plutonium, uranium and other isotopes as they multiplied on the earth's surface in the decades of nuclear weapons testing followed by decades of furious reactor construction. They will locate hot spots of concentrated activity, but generally the isotopes will embrace the planet like the sweet icing glaze encircling a donut: existing everywhere, holding fast, spiking the flavour of life...  r
ead more:
http://www.eurozine.com/articles/2016-07-22-brown-en.html